Reg No				
Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., CHEMISTRY

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
IV	PART – III	CORE - 7	U21CH407	PHYSICAL CHEMISTRY – II
Date & Session: 12.11.2024 / AN			Time : 3 hours	Maximum: 75 Marks

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.			
CO1	K1	1.	For isobaric process,			
			a) \triangle T=0 b) \triangle P = 0 c) \triangle V = 0 d) Q = 0			
CO1	K2	2.	The relationship between Cp and Cv is given by			
			a) $Cv - Cp = RT$ b) $Cp - Cv = R$ c) $Cp - Cv = KT$ d) $Cp/Cv = R$			
CO2	K1	3.	The unit of entropy is			
			a) JK^{-1} b) mol $J^{-1}K^{-1}$ c) JK^{-1} mol ⁻¹ d) $J/Kg/K$			
CO2	K2	4.	The Gibb's –Helmotz equation for a reaction at constant volume is			
			expressed as			
			a) $\Delta A = \Delta U + T(\frac{\partial(\Delta A)}{\partial T})_v$ b) $\Delta G = \Delta H + P(\frac{\partial(\Delta G)}{\partial T})_v$			
			c) $\Delta G = \Delta H + T \left(\frac{\partial (\Delta G)}{\partial T}\right)_p$ d) $\Delta A = \Delta U + T \left(\frac{\partial (\Delta G)}{\partial T}\right)_v$			
CO3	K1	5.	For a chemical reaction in which number of moles of the products and			
			reactants are equal, which one of the following is correct.			
			a) Kp=Kc b) Kp=2 x Kc c) Kp=Kx/Kc d) Kc=2X Kp			
CO3	K2	6.	The temperature dependence of equilibrium constant is given by			
			a) Claussius equation b) van't Hoff eqaution			
			c) Le-Chatelier principle d) de Donder's relationship			
CO4	K1	7.	Lyotrophic mesomorphism explain the transformation to intermediate			
			states by the interaction of			
			a) Thermal process b) solvent c) pressure d)			
0.04		0	electrolyte			
CO4	K2	8.	The sum of mole fractions of solute and solvent of a solution is equal to			
			-			
CO5	K1	9.	a) 2 b) 0 c) 3 d) 1 The rule that relates the equivalent conductivity and viscosity of the			
005	K1	9.	The rule that relates the equivalent conductivity and viscosity of the solvent for a specific electrolyte is			
			a) Charles rule b) Kohlrausch's law c) Walden rule d) Gibb's phase			
			rule			
CO5	K2	10.	At 25°C, the value of ionic product of water is			
			a) 1×10 ⁻¹⁴ . b) 1×10 ⁻⁷ c) 1×10 ¹⁴ . d) 1×10 ⁷			

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL Q</u> uestions choosing either (a) or (b)
CO1	K3	11a.	Derive relationship between Cp and Cv.
CO1	K3	11b.	(OR)
			Apply first law of the thermodynamics in finding work done by a system.
CO2	K3	12a.	Deduce expressions for entropy change accompanying change of phases.
			(OR)
CO2	K3	12b.	How does free energy vary with temperature?
CO3	K4	13a.	Examine relationship between Kp& Kc for an ideal gas.
			(OR)
CO3	K4	13b.	Apply law of mass action to dissociation of N ₂ O ₄ .
CO4	K4	14a.	State Henry's law and analyze on its limitations.
			(OR)
CO4	K4	14b.	State Raoult's law and analyze on the deviation of solutions from ideal
			behaviour.
CO5	K5	15a.	Review on variation of conductance with dilution.
			(OR)
CO5	K5	15b.	Illustrate Debye –Falkenhagen effect.

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL Questions choosing either (a) or (b)</u>				
CO1	КЗ	16a.	Derive an expression for Joule-Thomson coefficient. (OR)				
CO1	K3	16b.	Distinguish between (i)state functions and path functions (ii) Open and closed system (iii) Exact and inexact differentials.				
CO2	K4	17a.	Relate free energy and enthlapy using Gibbs Helmholtz equation. (OR)				
CO2	K4	17b.	Analyze on entropy change in reversible processes.				
CO3	K4	18a.	Derive an integrated vant Hoff's equation for temperature dependence of equilibrium constant.				
	T7 4	1.01	(OR)				
CO3	K4	18b.	Analyze the effect of change of pressure and temperature on the formation of ammonia based on Le- Chatelier principle.				
CO4	K5	19a.	How will you estimate the concentration of solutions in terms of molarity,				
			molality, mole fraction and normality?				
			(OR)				
CO4	K5	19b.	Review on different types of Liquid crystals.				
CO5	K5	20a.	Determine the transport number by Hittorf and moving boundary methods.				
CO5	K5	20b.	(OR) Evaluate Debye – Huckel – Onsager theory of strong electrolytes.				